Olá, podem-me ajudar nestes três limites, sff?
Boas,
\[\lim_{x \to 0} \frac{3x-\sin x}{4x+3\sin x}=\frac{0}{0}\]
Dividindo o numerador e o denominador por \(x\) , tens
\[\lim_{x \to 0} \frac{ \frac{3x-\sin x}{x}} {\frac{4x+3\sin x} {x} }=\lim_{x \to 0} \frac{ 3-\frac{\sin x}{x}}{4+3\frac{\sin x} {x} }\]
Aplicando o limite notável \[\lim_{x \to 0}\frac{\sin x} {x}=1\] , vem:\[\frac{3-1}{4+3}=\frac{2}{7}\]
____________________________________________________________________________________________________________________________________________________
\[\lim_{x \to \frac{\pi}{4}}\frac{\sin x - \cos x}{4x-\pi}=\frac{0}{0}\]
\[\sin x-\cos x = \frac{\frac{\sqrt{2}}{2}\left(\sin x - \cos x \right)}{\frac{\sqrt{2}}{2}}=\frac{\frac{\sqrt{2}}{2}\sin x - \frac{\sqrt{2}}{2}\cos x}{\frac{\sqrt{2}}{2}}=\frac{\sin \left(x-\frac{\pi}{4}\right)}{\frac{\sqrt{2}}{2}}\]
Substituindo, tens:
\[\lim_{x \to \frac{\pi}{4}}\frac{\sin\left(x-\frac{\pi}{4}\right)}{\frac{\sqrt{2}}{2}\left(4x-\pi\right)}=\lim_{x \to \frac{\pi}{4}}\frac{\sin\left(x-\frac{\pi}{4}\right)}{2\sqrt{2}\left(x-\frac{\pi}{4}\right)}=\frac{\sqrt{2}}{4}\lim_{x \ - \ \frac{\pi}{4} \ \to \ 0}\frac{\sin\left(x-\frac{\pi}{4}\right)}{x-\frac{\pi}{4}}=\frac{\sqrt{2}}{4}\]
____________________________________________________________________________________________________________________________________________________
\[\lim_{x \to 0} \frac{\cos \left(\frac{3 \pi} {2}+2x\right) }{3x}=\frac{0}{0}\]
Pela redução ao primeiro quadrante, tens que \(\cos \left(\frac{3 \pi} {2}+2x\right)=\sin \left(2x\right)\)
Logo, vem:
\[\lim_{x \to 0} \frac{\sin\left(2x\right)}{3x}\]
Multiplicando o numerador e o denominador por \(\frac{2}{3}\), tens:
\[\frac{2}{3}\lim_{2x \to 0} \frac{\sin \left(2x\right)}{2x}=\frac{2}{3}\]